• Parsons XH, Parsons JF, Moore DA. (2012) Genome-Scale Mapping of MicroRNA Signatures in Human Embryonic Stem Cell Neurogenesis. Molecular Medicine & Therapeutics 1(2),

To date, lacking of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing effective cell-based therapies against a wide range of neurological disorders. Derivation of human embryonic stem cells (hESCs) provides a powerful tool to investigate the molecular controls in human embryonic neurogenesis as well as an unlimited source to generate the diversity of human neuronal cell types in the developing CNS for repair. However, realizing the developmental and therapeutic potential of hESCs has been hindered by conventional multi-lineage differentiation of pluripotent cells, which is uncontrollable, inefficient, highly variable, difficult to reproduce and scale-up. We recently identified retinoic acid (RA) as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs under defined platform and trigger progression to human neuronal progenitors (hESC-I hNuPs) and neurons (hESC-I hNus) in the developing CNS with high efficiency, which enables hESC neuronal lineage-specific differentiation and opens the door to investigate human embryonic neurogenesis using the hESC model system. In this study, genome-scale profiling of microRNA (miRNA) differential expression patterns in hESC neuronal lineage-specific progression was used to identify molecular signatures of human embryonic neurogenesis. These in vitro neuroectoderm-derived human neuronal cells have acquired a neuron al identity by down-regulating pluripotence-associated miRNAs and inducing the expression of miRNAs linked to regulating human CNS development to high levels in a stage-specific manner, including silencing of the prominent pluripotence-associated hsa-miR-302 family and drastic expression increases of the Hox hsa-miR-10 and let-7 miRNAs. Following transplantation, hESC-I hNuPs engrafted and yielded well-integrated neurons at a high prevalence within neurogenic regions of the brain. In 3D culture, these hESC-I hNuPs proceeded to express subtype neuronal markers, such as dopaminergic and motor neurons, demonstrating their therapeutic potential for CNS repair. Our study provides critical insight into molecular neurogenesis in human embryonic development as well as offers an adequate human neurogenic cell source in high purity and large quantity for scale-up CNS regeneration.

(Read the full article…)


Differential expression of microRNA species in a freeze tolerant insect,< i> Eurosta solidaginis A Novel Phosphopeptide Microarray Based Interactome Map in Breast Cancer Cells Reveals Phosphoprotein-GRB2 Cell Signaling Networks