• Courteau LA, Storey KB, Mori Jr. (2012) “Differential expression of microRNA species in a freeze tolerant insect,< i> Eurosta solidaginis”. Cryobiology 65(3), 210-4.

Freeze tolerance in insects is associated with a variety of adaptations including production of cryoprotectants, specialized proteins that regulate ice formation, and energy-saving mechanisms that strongly suppress the rates of metabolic processes in the oxygen-limited frozen state. We hypothesized that microRNAs (miRNAs), small non-coding transcripts that bind to mRNA, could play a role in the global regulation of energy-expensive mRNA translation in frozen insects and would be modulated at subzero temperatures. Expression levels of miRNA species were evaluated in control (5 °C) and frozen (−15 °C) goldenrod gall fly larvae, Eurosta solidaginis, using a miRNA microarray. Levels of miR-11, miR-276, miR-71, miR-3742, miR-277-3p, miR-2543b and miR-34 were significantly reduced in frozen larvae whereas miR-284, miR-3791-5p and miR-92c-3p rose significantly in frozen larvae. Target prediction for two miRNAs, miR-277-3p and miR-284, revealed potential regulation of transcripts involved in translation and the Krebs cycle. These data constitute the first report that differential expression of miRNAs occurs in a freeze tolerant insect and suggest a mechanism for reversible gene regulation during prolonged periods of freezing over the winter months, a mechanism that can be rapidly reversed to allow renewed translation of mRNA when temperatures rise and insects thaw.

(read the full article)


Discovery of Novel MicroRNAs in Rat Kidney Using Next Generation Sequencing and Microarray Validation Genome-Scale Mapping of MicroRNA Signatures in Human Embryonic Stem Cell Neurogenesis